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ABSTRACT

This study demonstrates the efficacy of machine learning (ML)-based trend inference using data from the large plasma device (LAPD). The
LAPD is a flexible basic plasma science device with a high discharge repetition rate (0.25-1Hz) and reproducible plasmas capable of
collecting high-spatial-resolution probe measurements. A diverse dataset is collected through random sampling of LAPD operational
parameters, including the magnetic field strength and profile, fueling settings, and the discharge voltage. Neural network ensembles with
uncertainty quantification are trained to predict time-averaged ion saturation current (I;—proportional to density and the square root of
electron temperature) at any position within the dataset domain. Model-inferred trends, such as the effects of introducing mirrors or chang-
ing the discharge voltage, are consistent with current understanding. In addition, axial variation is optimized via comprehensive search over
I predictions. Experimental validation of these optimized machine parameters demonstrates qualitative agreement, with quantitative differ-
ences attributable to Langmuir probe variation and cathode conditions. This investigation demonstrates, using ML techniques, a new way of
extracting insight from experiments and novel optimization of plasmas. The code and data used in this study are made freely available.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0270755

I. INTRODUCTION

Understanding and controlling plasma behavior in fusion devices
is necessary for developing efficient fusion reactors for energy produc-

tokamaks.”® These predictions enabled training of a reinforcement
learning-based controller.”® In addition, a decision tree-based control-
ler was trained to maximize f§y while avoiding tearing instabilities” on
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tion. Because of the complex, high-dimensional parameter space, tradi-
tional experimental approaches are often time-consuming and require
careful planning. This work explores how machine learning (ML) tech-
niques can accelerate this understanding by studying the effect of
machine parameters in a basic magnetized plasma device. Trend infer-
ence is the process of relationship discovery. While ML methods, par-
ticularly neural networks (NNs), have become increasingly prevalent
in fusion research for control and stabilization, their application to sys-
tematic trend discovery remains largely unexplored.

Many studies have used ML for profile prediction on a variety of
tokamaks, particularly for real-time prediction and control. For exam-
ple, NNs were used to predict electron density, temperature, and other
quantities in DIII-D,’ and reservoir NNs have demonstrated the ability
to quickly adapt to new scenarios or devices.” Temporal evolution of
parameters has been successfully modeled using recurrent neural net-
works (RNNs) for multiple devices, including the EAST" and KSTAR

DII-D. Electron temperature profiles have also been predicted using
dense NNs on the J-TEXT tokamak.”

A parallel focus has been on instability prediction and mitigation in
tokamaks, particularly of disruptions. Notable achievements in disrup-
tion prediction include RNN-based disruption prediction’ and random
forest approaches,’ with a comprehensive review available by Vega
et al."' Recent work has extended to active control, such as the mitigation
of tearing instabilities in DIII-D using reinforcement learning.'

While ML has proven effective for prediction and control tasks,
inferring trends using data-driven methods has been relatively uncom-
mon. Notable exceptions include finding scaling laws on the JET toka-
mak'” via classical ML techniques and the development of the Maris
density limit,"* which outperforms other common scalings (including
the Greenwald density limit) in predictive capability.

The use of machine learning and Bayesian inference in fusion
research has been recently reviewed by Pavone et al."”
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Outside of magnetized plasmas, the laser plasma community has
embraced ML techniques for various applications, enumerated in a
review by Dopp et al.'® Data-driven plasma science, in general, has
been reviewed by Anirudh et al.'” Notably, a similar quasi-random
method (Sobol sequences) was used to collect a spectroscopy dataset
on a plasma processing device over diverse machine settings.'” This
process is similar to what is performed in our work here, but a genera-
tive variational autoencoder was instead trained to be used as an
empirical surrogate model.

This work advances data-driven methods in plasma physics by
taking these methods one step further: instead of learning a model for
particular task (e.g., disruption prediction or profile prediction), we
infer learned trends directly from the model itself.

The goal of this study is to develop a data-driven model that can
provide insight into the effect of machine parameters on plasmas pro-
duced in large plasma device (LAPD) in lieu of a theoretical model. In
contrast with tokamaks and other fusion devices, the LAPD is particu-
larly well-suited for ML data collection because of its flexibility and the
high repetition rate. We demonstrate the capability to infer trends in a
particular diagnostic signal, the time-averaged ion saturation current
(Isat), for any mirror (or anti-mirror) field geometry in a variety of
machine configurations. Langmuir probes are commonly used to mea-
sure density, temperature, and potential in virtually all plasma devices
in low-temperature (less than tens of an electron volts) regimes. The
I signal, in particular, is almost always used in the LAPD for calculat-
ing local plasma density.

This study performs two firsts in magnetized plasma research:
using NN to directly infer trends and collecting data efficiently with
partially randomized machine parameters. We also demonstrate opti-
mizing LAPD plasmas, given any cost function by minimizing axial
variation in Ig. This global optimization is only possible using ML
techniques. This work demonstrates the usefulness of a pure ML
approach to modeling device operation and shows how this model can
be exploited. We encourage existing ML projects and experiments to
consider this approach if possible. Acquiring sufficiently diverse data-
sets may require assuming some risk because diverse data, such as dis-
charges from randomly sampled machine settings, may not be
amenable to conventional analysis techniques.

All the processed data used for training the models in this study
are freely available.'” Other devices have also made data publicly avail-
able. Namely, data for H-mode confinement scaling have been avail-
able since 2008,”" and more recently, some MAST?' and all LHD*
data are now publicly available.

This paper is organized as follows: Sec. II discusses the LAPD and
the data acquisition methodology. Sections III and IV detail the devel-
opment of the model and uncertainty quantification. Section V
presents model validation, followed by trends in discharge voltage and
gas puff duration in Sec. V1. Section VII demonstrates optimization of
the axial I profile, with the discussion and conclusion in Secs. VIII
and IX.

Il. DATA COLLECTION AND PROCESSING
A. The large plasma device (LAPD)

The large plasma device (LAPD)”* is a basic plasma science
device located at the University of California, Los Angeles. The LAPD
produces up to 18 m long, 1 m diameter plasmas with densities up to
3 x 10" cm ™ and temperatures up to 20 €V, though typical operation

ARTICLE

pubs.aip.org/aip/pop

yields temperatures around 5eV. Probes can sample virtually any
point in this plasma through unique ball valves placed every 32 cm
along the length of the device, enabling the collection of time-series
data with high-spatial resolution. The discharge repetition rate is con-
figurable between 0.25 and 1 Hz. Additionally, the LAPD has 13 inde-
pendently controllable magnet power supplies to shape the geometry
of the axial magnetic field. The discharge is formed by 35 cm diameter
lanthanum hexaboride (LaB6) cathode’* and 72 cm molybdenum
anode 0.5 m away (—z direction) at the southern end (+z) of the
device. A cartoon of the LAPD and relevant coordinate system can be
seen in Fig. 1.

The LAPD has many experimental control parameters for various
physics studies. While the device can accommodate various insertable
components, this study focuses on the parameters fundamental to the
operation of the main cathode. Specifically, halfway between the cath-
ode and anode are three gas puff valves: East, West, and top. The aper-
ture, duration, and triggering of these valves have a large impact on
plasma formation. A static gas fill system also exists, but it is not used
in this study. The cathode-anode voltage (and consequently, discharge
power) strongly influences plasma density and temperature down-
stream of the source. Additionally, the magnetic field configuration
substantially shapes the plasma column. One crucial variable not con-
sidered in this study is the cathode temperature, as its adjustment and
equilibration require many hours, limiting dataset diversity. This com-
bination of diagnostic coverage, high repetition rate, and extensive
configurability renders the LAPD particularly suitable for machine
learning studies.

B. Data collection and processing of I, signals

The ion saturation current, denoted as I, is obtained by apply-
ing a sufficiently negatively bias to a Langmuir probe to ensure the
exclusive collection of ions. This collected current is proportional to
Sne\/T,, where n, and T, are the electron density and temperature,
respectively, and S is the effective probe collection area. To account for
differences in probe tip geometry, the I, values are normalized to
area. Under typical conditions, an I value of 1 mA/ mm? corresponds
to 1, &~ 1-2 X 102 cm ™ fora T, from 4 to 1 eV.

Data collection was conducted in two campaigns separated by
14 months. The initial run set is designated as DR1 and the subsequent
run set as DR2. These run sets are further broken down into dataruns,
which are series of discharges (shots) with identical operational machine
parameters. A total of 67 dataruns were collected over both campaigns.

I, measurements were averaged over 10 to 20ms to exclude
plasma ramp-up and fluctuations. Example I, probe data can be seen
in Fig. 2 alongside gas puff timings. Profile evolution is not studied to
minimize computational requirements. I, characteristics vary signifi-
cantly between axial (z) position machine parameters. For I, mea-
surements on the same probe as a Langmuir sweep (DR2 port 26,
z =863 cm), the averaging process excludes the sweep period with an
additional 40 y s buffer. I, measurements in DR1 that saturated either
the isolation amplifier or digitizer are excluded from the dataset. Only
484 shots were removed out of ~132 000, so the impact on the aggre-
gate dataset is minimal.

The LAPD control parameters varied in this study were the
source field, mirror field, midplane field, gas puff valve voltage, gas
puff duration, and discharge voltage. The magnetic field regions are
labeled in Fig. 1 and effectively control the width of the plasma relative
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Large Plasma Device
Top view
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FIG. 1. A cartoon of the large plasma device, the coordinate system used, examples of a mirror and anti-mirror magnetic field configuration, and probe locations used in this
study. The source, mirror, and midplane regions are labeled; the three fields were programmed independently.

Gas puff timings and /g5t time series at x=0 (DR2)

Discharge
40 A voltage —— DR 09, z=1150 cm
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104
P o " SR
0 — 5ms E)uff
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FIG. 2. Gas puff timings and example /s time series at three different z-axis loca-
tions from three different dataruns. Note that some discharges do not achieve
steady state in fg.

to the cathode in their respective regions. The gas puff voltage governs
gas flow rate into the chamber, though this relationship is not yet
quantified, and the gas puff duration defines the piezo valve activation
period. The discharge voltage is applied across the cathode and anode
10 ms after gas puff initiation. While discharge voltage correlates with
discharge current (and thus power), the current depends on the
machine configuration and downstream conditions and cannot be
predetermined.

These machine parameters—with the exception of gas puff dura-
tion—were randomly sampled via Latin-hypercube sampling (LHS)
for 44 of the dataruns. Data were then collected with these settings.
Gas puff duration was reduced for the last seven runs to 20, 10, or 5ms
(see Fig. 2 for timings relative to Iy, signals). The breakdown of each
setting in the dataset is given in Appendix A, Table IV. The top gas

puff valve was used for only the first nine dataruns of DR2 because of
equipment issues.

I measurements were acquired along y =0 lines (51 dataruns
total) or x-y grids (16 dataruns total) with spatial resolutions varying
between 1.5 and 2 cm. The fixed axial locations of the probes were
895cm and 831 in DR1 and 1150, 1022, 863, and 639cm for DR2
(Fig. 1). Six shots were recorded at each position except for the first
four dataruns in DR1 with five shots each. While I, exhibits a small
degree of shot-to-shot variation, the present model only learns the
expected value, leaving distributional modeling to future generative
approaches.

C. Dataset distribution and bias

Neural network inputs comprise 12 variables: source field, mirror
field, midplane field, gas puff voltage, discharge voltage, gas puff dura-
tion, probe coordinates (x, y, z), probe rotation, run set identifier, and
top gas puff flag. These variables can be interpreted as six control
parameters, four probe coordinates, and two flags. These inputs are
mean-centered and normalized to the peak-to-peak value with no out-
liers in the dataset. The baseline models trained in Sec. III B did not
contain the run set identifier or top gas puff flag.

Measurements over an x-y plane, constituting ~64% of all shots,
are predominantly acquired overnight for maximal machine utiliza-
tion. These longer dataruns lead to particular machine configurations
being overrepresented in the dataset.

The dataset predominantly contains gas puff durations of 38 ms.
Only 6 runs in the training set have gas puff durations less than 38 ms:
three have 5 ms and three have 10 ms, each having mirror ratios 1, 3,
and 6 but otherwise identical configurations in an attempt to see
mirror-related interchange instabilities in higher-temperature, lower-
collisionality regimes. The 20 ms gas puff duration case is in the test
set. This sampling bias toward the 38 ms gas puff duration suggests
that poor model performance is to be expected in shorter gas puff
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regimes. The top gas puff valve was operational for only the first nine
runs of DR2.

The I, distribution is dissimilar between DR1 and DR2: DR1
appears to have a more uniform distribution. Combining the two data-
sets results in many I examples less than 2mA/mm? and a sharp
decrease in number of examples above 10 mA/mm?. Thus, we expect
the model to perform better for smaller I, values than larger ones.
Data bias is further discussed in Appendix A.

Ill. MODEL DEVELOPMENT, TRAINING
A. Training details

For initial experiments in training the model, a mean-squared
error (MSE) loss is used:

Lysg = %Zl (f(x:) —y,-)z, (1)

where x; represents the input vector for the ith example, y; the target
measurement, m the batch size, and f the NN. During training, overfit-
ting was assessed via the validation set MSE with a traditional 80-20
train-validation random split. Unless stated otherwise, a dense neural
network, four hidden layers deep and 256 units wide (= 200000
parameters), was trained with AdamW using a learning rate of
3 x 107%. Leaky ReLU activations (the nonlinearities in the NN) and
adaptive gradient clipping” (cutting gradients norms above the 90th
percentile of recent norms) were used to mitigate vanishing gradients
and mitigate exploding gradients, respectively. The models were evalu-
ated after training concluded at 500 epochs.

B. Baselines for mean-squared error

A model was first trained with zeroed-out inputs as a baseline
and to validate the data pipeline. This model effectively has only a sin-
gle, learnable bias parameter at the input. This process yields a valida-
tion loss (simply MSE in this case) of 0.036. A linear model, though
incapable of reasonably fitting the data, was trained as a performance
baseline and to validate the data pipeline. This baseline linear model
reaches a training and validation loss (MSE) of around 0.014. These
initial models used tanh activations, though the impact of using a dif-
ferent activation function is minimal in these cases. A summary of
these baselines is seen at the top of Table I.

C. Effects of training set and model sizes

To study the effects of reduced diversity, the number of unique
dataruns in the training set was systematically reduced while evaluating
on a fixed test set. The test set loss monotonically increased with this
decrease in datarun count. Part of this decrease may be caused by a
simple reduction in training set size. In addition, models were individu-
ally trained and evaluated on DRI only or DR2 only. When evaluated
on the left-out run set, the test set losses were high, near or above the
zero-input baseline of 3.6 x 1072, This result suggests that both run
sets contain significant information missing in the other, and training
on both provides beneficial information on the structure of the Iy,; mea-
surement despite different probe calibrations and cathode state.

A larger model, consisting of a 12-deep 2048-wide dense network,
was trained on the full training dataset, evaluated at 30 epochs. This
larger model yielded a test MSE of 2.8 x 1073, indicating that these
NN are behaving as expected. Longer training or larger models may
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TABLE I. Summary of test set losses for different training data and ensembles.

Model MSE x1073

36 (validation)
14 (validation)

Zeroed-input
Linear model

9 dataruns 7.0

19 dataruns 6.9

29 dataruns 4.2

39 dataruns 4.1

49 dataruns 3.4

DR1 only 6.4

DR2 only 5.4

Full set, large model 2.8
Full set average 3.6+ 0.56
Full set ensemble 29+1.1
“Run set” flag ensemble 1.9+ 0.64

“Top gas puft” flag 1.8

yield better test set results but will likely not come close to the training
and validation losses, which are on the order of 107°. Combined mod-
els with differing initializations (an ensemble) were trained to measure
the MSE variance over model parameters, which was about 16%.
When the I predictions were averaged, the test set MSE was
2.9+ 1.1 x 1073, achieving the best performance for that model size.
These test set losses are also seen in Table I.

D. Improving performance with machine state flags

Data from DR1 and DR2 were collected 14 months apart leading
to differing machine states. In DRI, only one turbo pump was operat-
ing leading to much higher neutral pressures than in the DR2 run set.
A new parameter (mean-centered and scaled) was added to the inputs
to distinguish between these two run sets. All the predictions in this
study use the DR2 run set flag (a value of 1.0) because turning off the
turbopumps is not a commonly desired mode of operating the LAPD.
The inclusion of this parameter also provides the model the ability to
distinguish between the probe calibration differences between DRI
and DR2. An ensemble prediction with this run set flag brings the test
set MSE down to 1.9 x 1073,

A flag indicating when the top gas puff valve was enabled in DR2
was also added to all training data, allowing the model to further dis-
tinguish between different fueling cases. The addition of this flag incre-
mentally improved test set MSE to 1.8 x 1072. The effect on MSE on
the inclusion of these new parameters is compared to the performance
of other models in Table I.

E. Learning rate scheduling

Modifying the learning rate over time (scheduling) is known to
improve model learning. The following schedules were compared: con-
stant learning rate (y = 3 x 107%), y oc epoch !, 7y o exp(—epoch),
and y epochfl/ 2. The epoch is the training step divided by the num-
ber of batches in one epoch, so “epoch” in this case takes on a floating-
point value. y oc epoch™" appears to give the best test set loss by a test
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MSE difference of 1 x 1074, and any schedule beats a constant learn-
ing rate by a difference of 2 — 4 x 107%.

IV. UNCERTAINTY QUANTIFICATION
A. B-NLL loss

Instead of predicting a single point, the model can predict a
mean  and variance ¢* using the negative-log likelihood (NLL)
loss*>*” by assuming a Gaussian likelihood. An adaptive scaling factor
StopGrad((rfﬁ ) is introduced, which can be interpreted as an interpo-
lation between an MSE loss and Gaussian NLL loss, yielding the
fB-NLL loss:

Ly w1 = % <log o2 (x,) + M)

a7 (xp)

@
StopGrad (a?/} ) ,

for example n and model i, with an implicit expectation over training
examples. f = 0 yields the original Gaussian NLL loss function and
f =1 yields the MSE loss function. This factor improves MSE perfor-
mance by scaling via an effective learning rate for each example (which
necessitates the StopGrad operation)”® and improves both aleatoric
and epistemic uncertainty quantification.”” f = 0.5 was used by
default in this study. This f-NLL loss function also improved training
stability.

This NLL-like loss assumes the prediction—the likelihood of y
given input x: p(y|x)—following a Gaussian distribution. Treating
each prediction as an independent random variable [considering each
model in the ensemble is sampled from some weight distribution
0 ~ p(0|x,y)] and finding the mean of the random variables yields a
normal distribution with mean p,(x) = (p;(x)) and variance
02 = (d?(x) + 12(x)) — 1?(x), where () indicates an average over the
ensemble.

The ensemble predictive uncertainty can be broken down into the
aleatoric and epistemic components:”’ the aleatoric uncertainty is
(6?(x)) and the epistemic uncertainty is (u?(x)) — p3(x)
= Var|[y;(x)]. The intuition behind these uncertainties is that the ran-
dom fluctuations in the recorded data are captured in the variance of a
single network, 7. If the choice of model parameters was significant,
we would expect the predicted mean for a single model, 1, to fluctuate
as captured by Var[u;(x)].

B. Cross-validation MSE

For cross-validation, multiple train-test set pairs were created.
Test set 0 comprises deliberately chosen dataruns to encompass a
diverse set of machine settings and probe movements. The other six
datasets were compiled with randomly chosen dataruns (without
replacement) while keeping the number of dataruns from DR1 and
DR2 equal. Seven model ensembles (5 NNs per ensemble—35 NNs
total) were trained to evaluate the effect of test set choice on model
MSE. The median ensemble test set MSE for these seven sets was
2.13 x 10~ with a mean of 3.6 x 107>, The handpicked dataset had
an ensemble test set MSE of 1.85 x 1073, indicating that the choice of
dataruns was adequately representative. This median MSE will be used
to estimate model prediction error in addition to uncertainty quantifi-
cation. This cross-validation also provides an error estimate if the
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models were to be trained on all dataruns. Ensembles always out-
performed the average error of single-model predictions.

All validation set MSEs fall between 1 and 6 x 107>, with the
average training MSE falling within that range as well. These MSEs
indicate that the model is able to fit the training data to a high degree
of accuracy regardless of which dataruns are held out. The loss and
MSE curves over training epochs can be seen in Fig. 11 in Appendix B.

C. Model calibration via weight decay

The predicted uncertainty may not provide an accurate range of
I values when compared to the measured value. Calibrating the
model means changing the predicted uncertainty range so that the
measured values fall within that range according to some distribution,
such as a Gaussian in this case. One of the ways assessing this calibra-
tion is by the z-score of predictions, where z,, = (x,, — p,,)/n(x,) for
example x,, predicted mean f,, and standard deviation o,. Perfect
model calibration would lead to identical z-score distribution N (i
= 0,0 = 1) for the training test sets. When evaluated on the training
set, the distribution should be a Gaussian with a standard deviation of 1.

Increased weight decay can lead to better model calibration.™
Weight decay penalizes large parameter values by adding the L2 norm
of model weights to the loss. Model ensembles were trained with
weight decay coefficients between 0 and 50 to determine the best cali-
brated model determined by the distribution of z-scores of the training
and test sets. The results of this weight decay scan are seen in Fig. 3.
Increasing the weight decay increases the test MSE and decreases its z-
score standard deviation. This large standard deviation is caused by
outliers. Excluding z-scores magnitudes above 10, or 4.4% of the test
set, yields a standard deviation of 2.53. This long tail indicates that the
distribution of predictions on the test set is not Gaussian. Nonetheless,
the trend remains that increasing weight decay leads to smaller test set
z-score standard deviations. However, the test set MSE increases after
a weight decay of 1. This increase in test MSE implies that the model is
making less accurate predictions but is better calibrated. Highly biased
models are better calibrated but come at great expense of mean

B-NLL model weight decay scan
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FIG. 3. Model performance and calibration for different weight decays. Highly
biased models are better calibrated but come at great expense of mean prediction
error. At the weight decay value of 50, the model has worse error than a linear
model. Note the linear scale below 1072,
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prediction error. At the weight decay value of 50, the model has worse
error than a linear model. Despite the attempts using weight decay, the
model never becomes well-calibrated: the predicted uncertainty is
always too low by a factor of 2-5.

Despite the better calibration, the uncertainty predicted by a
model with a large weight decay is decidedly worse: the uncertainty is
similar across an entire profile, and when projected beyond the train-
ing data, the total uncertainty remains largely constant as seen in
Fig. 4. The zero weight decay model exhibits relatively increasing
uncertainty beyond the bounds of the training data. Although not
well-calibrated, this uncertainty can provide a hint of where the model
lacks confidence relative to other predictions, even though the uncer-
tainty is much less than it should be.

V. EVALUATING MODEL PERFORMANCE

Model performance is evaluated in three ways by comparing
against intuition from geometry, an absolute measurement, and
extrapolated machine conditions.

A. Checking geometrical intuition

Assuming magnetic flux conservation, we know that modifying
the mirror geometry can control the effective width of the plasma. One
way to check that the model is learning appropriate trends is to check
with this intuition. If the magnetic field at the source is not equal to
the field at the probe, the probe will see the plasma expanded (or con-
tracted) by roughly a factor of \/Bprobe/Bsouree- The cathode is about
35cm in diameter, so a magnetic field ratio of 3 would give a plasma
approximately 60 cm in diameter. All the probes used in this study are
in or very close to the zero-curvature midplane region of a mirror.

To check this intuition, the model is given the following inputs:
Buouree =500G,  Buirror = 1500G,  Buyigplane = 500G, discharge
voltage =110V, gas puff voltage=70V, gas puff duration =38 ms,
run set flag=DR2, and top gas puff= off. The discharge voltage and
gas puffing parameters were arbitrarily chosen. The x coordinate is
scanned from 0 to 30 cm, and the z coordinate from 640 to 1140 cm.
This discharge is then modified by separately changing Bsource to

Data and prediction error, DR2_10 profiles
le-3 _A=0.0 _A=10.0
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1500 G and Brjidplane to 750 G (M = 1.5). The x profiles at the midplane
(z=790cm) of the reference M =3 prediction, source field change,
and midplane field change, all scaled to cathode radius, can be seen in
Fig. 5. Changing the source field to 1500 G increases the Iy, toward the
edge of the plasma, as expected. When the midplane field is increased,
the I values decrease at the edge and increase at the core (x =0 cm),
implying a thinner plasma column, and are consistent with previously
measured behavior. When only the mirror field is modified (not
shown), the strongest effect on Iy is on or near x=0cm, and the
plasma column width does not appear to appreciably change.

B. Directly comparing prediction to measurement

I, measurements were taken with the following LAPD machine
settings: Boource = 1250 G, Biirror = 500 G, Bmidplane = 1500 G, discharge
voltage =90 V, gas puff voltage = 90 V, gas puff duration = 38 ms, run
set flag=DR2, and top gas puff = off. These settings were from a pre-
vious discharge optimization attempt. The probes utilized were the
permanently mounted 45° probe drives. These probes were known to
have identical effective areas relative to each other from the previous
experiment and from analyzing the discharge ramp-up.

Because of data acquisition issues, only a single useful shot was
collected at a nominal —45° angle (relative to the x-axis) 10 cm past
the center (x=0cm, y=0cm) of the plasma on three probes at z-
positions of 990, 767, and 607 cm (ports 22, 29, and 34, respectively).
The probe drives were slightly uncentered, leading to the real coordi-
nates of the probes to be around x = 9.75cm and y = —8.4 cm. Note
that the model can predict anywhere in LAPD bounded by the training
data, so off-axis measurements are not an issue. The resulting predic-
tions using these coordinates and machine conditions can be seen in
Fig. 6. The model reproduces the axial trend well but slightly underes-
timates I, on an absolute basis. However, given the lack of absolute
I calibration and variable machine state, the agreement of the abso-
lute I, values may be coincidental. Nevertheless, the trend exhibited
by this validation study matches the predicted trend and increases our
trust in model predictions.
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Predicted x profiles in mirrors at the midplane
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FIG. 5. Plot of various mirror configurations scaled to the cathode radius
X; = 17.5cm at the midplane (z=790cm). When scaled according to the
expected magnetic expansion, the profiles generally agree. The smaller the plasma
diameter (and thus smaller volume), the higher the peak in /s at the core, as
expected.

An additional validation datarun was performed. For this run,
the discharge voltage was increased to 160V, and the source field
changed to 822 G. The training data contain discharge voltages up to
150V, so this case tests the extrapolation capabilities of the model. The
comparison of model predictions and the measured data can be seen
in Fig. 6. As stated earlier, the absolute uncertainty provided of the
model is not calibrated. However, note that the level of uncertainty
provided by the model and the large spread in model predictions are
much greater than seen in the interpolation regime (Fig. 6) and eclipse
the cross-validated test set root mean-squared error (RMSE). We con-
clude that this model has good interpolation capabilities, but extrapola-
tion—as with any model—remains difficult.

VI. INFERRING TRENDS

A systematic study of the impact of discharge voltages on I, pro-
files has not been conducted using conventional techniques. Collecting
both z- and x-axis profiles over a wide range of discharge voltages would
take a considerable amount of time, mostly from the requirement to dis-
mount and reattach the probes and probe drives along the length of the
LAPD. This study has now been performed using the learned model,
circumventing these time-consuming challenges. Model input parame-
ters were chosen to be common, reasonable values: 1kG flat field, 80 V
gas puff, 38 ms gas puff duration, run set=DR2, and top gas puff off.
The 38 ms puff is used in these predictions because it is the most com-
mon gas puff duration in the training set—the model is biased in favor
of this gas puff setting. The results of changing the discharge voltage
only can be seen in Fig. 7. Notably, the Iy, increases across both axes.
Steeper axial gradients are seen with lower discharge voltages, but
peaked x-profiles are seen at higher discharge voltages. The area closer
to the source region (+z direction) appears to have a steep drop, but
flatter profiles down the length of the machine.

Unfortunately, the discharge current was not included as an out-
put in the training set. Otherwise, the effect of changes in discharge
power, rather than simply voltage, could be computed. The discharge
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FIG. 6. Top: data collected at off-axis positions around x = 9.75cm and y
= —8.4cm are compared with predictions from the machine leaming model at the
same points in addition to two interpolating predictions. The model predicts the trend
well but underestimates /st in general. The shaded orange region is the total model
uncertainty (o = v/Var). Bottom: Measured vs predicted s values for an odd
machine configuration with Bsouree = 822 G and discharge voltage = 160 V. The train-
ing data only cover discharge voltages up to 150 V. The machine was also in an odd
discharge state, so it is no surprise that the predicted uncertainty bounds are very
large (even greater than the test set RMSE value) and that accuracy suffers.

current—thus discharge power—is set by cathode condition, cathode
heater settings, and the downstream machine configuration and, thus,
cannot be set to a desired value easily before the discharge. Discharge
voltage, however, can remain fixed.

Of particular interest for some LAPD users is achieving the most
uniform axial profile possible. We explore this problem in the context
of mirrors. The gas puff duration is known to be a large actuator for
controlling density and temperature and so is explored as a way of
shaping the axial profile. We predict discharges with a flat 1kG field
with the probe in the center. The discharge voltage was set at 110
(a reasonable, middle value) with the run set flag=DR2 and top gas
puffing = off. The inferred effect of gas puff duration on the axial gra-
dient and axial gradient scale length can be seen in Fig. 8. Care was
taken to handle the aleatoric (independent) uncertainty separately
from the axially dependent epistemic uncertainty. As seen in the figure,
the mean axial gradient decreases when the gas puff duration is short-
ened. The gradient scale length also increases, so the mean gradient is
not decreasing simply because the bulk Iy is decreasing. This result
suggests that the gas puff duration may be a useful actuator to consider
when planning future experiments.
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Discharge voltage: effect on x and z profiles
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FIG. 7. The z profile at x=0cm and x profile at z= 1140 cm for different discharge
voltages. The /s, decreases with increasing voltage, and the error (filled regions)
stays roughly the same, but, in general, increases slightly toward the cathode and
at higher discharge voltages.

These applicability of these results are somewhat muted because
the gas puff duration was not chosen randomly in the training dis-
charges. Given this lack of data diversity, the accuracy and applicability
of this study must be interpreted cautiously. When a model is trained
on all data available (using the cross-validated test set MSE as a guide
for error), which includes the 20 ms gas puff case, the predicted gradi-
ent scale length decreases uniformly across the duration scan by 1 m.
The fact that the trend remains intact when an additional, randomized
intermediate gas puff case is added gives confidence in the predictions
of the model despite the lack of data diversity.

VIl. OPTIMIZING PROFILES

One particular issue seen in LAPD plasmas is sharp axial density
and temperature gradients. Some experiments require flat gradients,
such as Alfvén wave propagation studies. We explore optimizing the
axial I, variation as an approximation to this problem. In addition,

Axial gradient vs gas puff duration
1 kG flat field, x=0
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in this case, the optimization problem is used as a tool to evaluate the
quality of the learned model. This is a very demanding task because
the trends inferred by the model along all inputs must simultaneously
be accurate. Constraints on this optimization further increase the dif-
ficulty of the problem. Success in optimization provides strong evi-
dence that the model has inferred relevant trends in predicting .
We quantify the uniformity of the axial profile by taking the standard
deviation of Iy of 11 points along the z-axis (x, y = 0). The required
LAPD state for attaining the most uniform axial profile can be found
by finding the minimum of this standard deviation with respect to the
LAPD control parameters and flags:

Inputs = arg min sd(Is|,_)- 3)
Inputs#z Z

The largest axial variation can likewise be found by finding the
maximum. The model inputs used for this optimization can be found
in Table II.

For this optimization, we use an ensemble of five -NLL-loss
models with weight decay 4 = 0. The 4 = 0 model is used because it
appears to give the most useful uncertainty estimate (seen in Fig. 4).
The optimal machine actuator states are found by feeding a grid of
inputs into the neural network. This variance estimate is not well-cali-
brated: the error of the predictions on the test set falls far outside the
predicted uncertainty. However, this uncertainty can be used in a rela-
tive way: when the model is predicting far outside its training range,
the predicted variance is much larger. The ranges of inputs into this
model are seen in Table II. These inputs yield 127234 800 different
machine states (times five models), which takes 151 s to process on an
RTX 3090 (=~ 4.2 x 10° forward passes per second) when imple-
mented in a naive way. The number of forward passes can be reduced
by a factor of 51 if the x value is set to 0 cm. Note that gradient-based
methods can be used for search because the network is differentiable
everywhere but this network and parameter space is sufficiently small
that a comprehensive search is computationally tractable.

Like any optimization method, the results may be pathologically
optimal. In this scenario, the unconstrained minimal axial variation is
found when the I is only around 1 mA/mm? which is quite small
and corresponds to 1-2 x 10> cm ™ depending on Te. The inputs
corresponding to this optimum are given in the second column of

20.0
= 1.2 1| 175 TABLE II. Machine inputs and actuators for model inference.
'?E 1.0 -15.0 © Input or actuator Range Step Count
(o)}
- - C
£os 1259 Source field 500-2000 G 250G 7
£ o6l F10.0 = Mirror field 250-1500 G 250G 6
. |9}
I Lys 2 Midplane field 250-1500 G 250G 6
2 —8— Mean : c
T 0.4 - k9] Gas pulff voltage 70-90 V 5V 5
e — Oepistemic r5.0 © .
o © Discharge voltage 70-150 V 10V 9
< 0.2 1 | Oaleatoric [G) .
- Scale length | 2.5 Gas puff duration 5-38 ms 8.25ms 5
0.0 . . : 0.0 Probe x positions —50 to 50 cm 2cm 51
10 20 30 Probe y positions 0cm
Gas puff duration (ms) Probe z positions 640-1140 cm 50 cm 11
FIG. 8. ML prediction: mean axial gradients decrease with decreased gas puff dura- Probe angle Orad o o
tion. Five durations are plotted between 5 and 38 ms (which are the bounds of the Run set flag Off and on 1 2
training data), evenly spaced. The gradient scale length also increases, indicating Top gas puff flag Off and on 1 2
that the gradient change was not just from a decrease in the bulk /.
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TABLE lll. Machine inputs and actuators for optimized axial profiles.
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Input or actuator Iy, constraint (mA/mm?) Weakest I,y = any

Weakest [, > 7.5

Strongest I, > 7.5 Intermediate I, > 7.5

Source field (G) 750
Mirror field (G) 1000
Midplane field (G) 250
Gas puff voltage (V) 70

Discharge voltage (V) 130
Gas puff duration (ms) 5

Run set flag On
Top gas puff flag On

1000 500 2000
750 500 1250
250 1500 750
75 90 90
150 150 120
5 38 38
On On On
Off Off Off

Table 1II. This density range is below what is required or useful for
many studies in the LAPD.

Since many physics studies require higher densities, we constrain
the mean axial Iy value to be greater than 7.5mA/mm’ (roughly
0.5-2 x 10" cm™?). The “run set flag” is set to “on” for cases to be vali-
dated (bolded in Table TIT) because we wish to keep the turbopumps to
represent typical LAPD operating conditions. In addition, the “top gas
puff flag” was set to “off” to minimize the complexity of operating the
fueling system on follow-up dataruns and experiments. Turning the top
gas puff valve on is predicted to decrease the average I, by —2 mA/mm®
for strongly varying profiles, but otherwise, the shapes are very similar.
The inputs corresponding to the maximum and minimum axial variation
under these constraints can be seen in columns 3 and 4 of Table III. For
contrast, we also consider what machine settings would lead to the great-
est axial variation. The results of both of these optimizations can be seen
in Fig. 9. The optimizations yield profiles that have the largest Iy, values
closest to the cathode, which is expected.

The prediction for an intermediate axial variation case is also
seen in Fig. 9. The intermediate case was chosen as somewhere around
halfway between the strongest and weakest case with a round index
number (15 000, in this case). The parameters for intermediate case are
also enumerated in Table III.

The predicted configurations with the run set flag on and top gas
puff flag off (bolded in Table IIT) were then applied on the LAPD. The
data collected, compared with the predictions, can be seen in Fig. 9.

Optimized axial /55t profiles

For the optimized axial profiles, the absolute value of the I pre-
dictions compared to measurement does not agree. All of the pre-
dicted profiles have overlapping predictions (within the predicted
error) at the region furthest from the cathode, but the measured values
do not show that behavior. Although the mean I, value was con-
strained to be greater than 7.5 mA/mm?, the measured mean was
2mA/mm?” for the weakest case.

The important result is that the optimized LAPD settings, when
implemented on the machine, do yield profiles with strong, intermedi-
ate, and weak axial variation. Although the minimum-I constraint
was violated for the case of weakest axial variation case, this optimiza-
tion would, nonetheless, be very useful for creating axial profiles of the
desired shape.

There are three contributing factors to the mismatch of the ML-
predicted values and the real measured values. First, the condition of
the machine, such as the cathode emissivity or temperature or the
downstream neutral pressure, is unquantified and cannot be compen-
sated for in data preprocessing or in the model itself. Second, the cali-
bration of the Langmuir probes could differ substantially between
runs. The probes in the training data run sets (DR1 and DR2) were
well-calibrated to each other within the run set but were not absolutely
calibrated. The probes used for verifying the optimization were not cal-
ibrated. A rough calibration was performed by linearly extrapolating
interferometer measurements and using triple probes (dotted lines on
the right panel in Fig. 9). A configuration identical to DR2 run 10 was
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also measured to simultaneously correct cathode condition and probe
calibration (solid lines on the right panel in Fig. 9). Langmuir probe
calibration is discussed further in Appendix C. Third, the original data-
set may not have sufficient diversity to make accurate predictions on
such a constrained optimization problem.

If this optimization were performed using the dataset instead of
the model, the constrained search would encompass just 10084 shots
out of the 131 550 shots total in the training dataset or around 7.7%.
Including the on-axis constraint reduces the number of shots down to
303 (270 in the training set) or 0.23% of all shots in the dataset. We
conclude that this optimization of an arbitrary objective function, as
done here, would be intractable using traditional, non-machine learn-
ing techniques because orders of magnitude more dataruns would
need to be collected.

Optimization requires correctly learning the trends of all inputs
and how they interact. In addition, as seen from the shot statistics, the
model was trained on very few shots in the constrained input and out-
put space. These two factors—the need for the model to learn all trends
and the constrained search space—combine to make an incredibly diffi-
cult task that functions as a benchmark for the model. These factors
were considered that it is not surprising that the model incorrectly pre-
dicts the absolute value. The uncertainty predicted by the model, though
not well-calibrated, was, nonetheless, very large compared to the median
test set RMSE. The model did predict the trends correctly; however, the
optimized, measured profiles were strong, intermediate, or weak.

We did not check to see if the predicted optima were actually true
optima: an approximation of the local derivative using a finite-
difference technique would require much more run time on the LAPD
than was available.

VIII. DISCUSSION
A. Key achievements

To the authors’ knowledge, this work is one of the first instances
that machine learning has been used to infer specific trends and opti-
mize profiles in magnetized plasmas. Three examples of trend infer-
ence were shown in this paper: influence of magnetic geometry on
plasma width, changes in the axial and radial profiles with changing
discharge voltage, and the relationship of gas puff duration with axial
gradient scale length. In addition, the axial profile was optimized by
minimizing (or maximizing) the axial standard deviation. There is no
other way of simultaneously uncovering many trends or finding
optima without using an ML model trained on a diverse dataset.
Traditionally, such studies would require extensive scans over grids to
map the parameter space, but here, it was accomplished with a rela-
tively small amount of data.

The trends inferred in this work, such as changing discharge vol-
tages, gas puff durations, or mirror fields, would traditionally require a
grid scan (varying one parameter at a time) in LAPD settings space.
Here, instead, we are able to extract any trend covered by the training
set with only a minimal amount of machine configurations sampled.
Both data collection runs lacked absolute I calibration and had
potential differences in cathode condition. Despite these issues, the
model learned trends that were exploited via optimization.

In addition, this work demonstrates uncertainty quantification
broken down into epistemic and aleatoric components by using
ensembles and a negative-log likelihood loss. This uncertainty estimate
is useful in gauging relative certainty between different predictions of
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the model, which increases confidence in the predictions of the model.
In general, the total uncertainty predicted by the model increases when
predictions are made outside the bounds of the training data.

Fundamentally, this model can predict Iy, with uncertainty at
any point in space covered by the training data. No other model cur-
rently exists that can perform this prediction. Traditionally, this capa-
bility would be possible only with a detailed theoretical study.

B. Current limitations

This study would be dramatically improved by collecting more,
diverse data. Only 44 of the 67 dataruns in this dataset had randomly
sampled LAPD machine settings, which is very small compared to
over 60000 possible combinations. In addition, there are many other
settings or parameters that were not changed in this study, such as gas
puff timings, gas puff valve asymmetries, wall/limiter biasing, cathode
heater settings, operation of the north cathode, and so on. The bounds
of the inputs were also conservative; all settings in this study could be
pushed higher or lower with a small amount of risk to LAPD opera-
tions. In addition, the placement of the probes could be further varied
and placed outside the mirror cell, which would provide a more com-
plete picture of LAPD plasmas, particularly axial effects.

Probe calibrations differed between the two training run sets
(DR1 and DR2)—and a flag was introduced to distinguish between
them—but despite this deficiency, combining the two run sets was
shown to be advantageous for model performance. The condition of
the cathode (e.g., electron emissivity and uniformity) also has a large
impact on the measured I. The improved model performance with
the flag suggests that inconsistencies between dataruns could be com-
pensated for using latent variables if a generative modeling approach is
to be taken. At the very least, this model provides a way to benchmark
these differences in machine state.

Concerning the model, hyperparameter tuning could be per-
formed. In this study, a few extra percent in MSE performance is not
meaningful, considering the limited dataset. Instead, we focused on the
trends and insights that can be extracted from this model rather than
simple predictive accuracy. There may also be regimes in hyperpara-
meter space, where the uncertainty is better calibrated (perhaps using
early stopping). Uncertainty estimation is important, even if the abso-
lute uncertainty is not well-calibrated because it can provide a useful
relative estimate as shown in this paper.

Trends such as the dependence of axial gradient on the gas puff
duration (Fig. 8) or the effect discharge voltage on x-z profiles (Fig. 7),
although intuitive, remain unverified. Verification of these trends
would increase confidence of model predictions when setting LAPD
parameters in future experiments.

C. Future directions

The neural network architecture used here can readily scale to
additional inputs and outputs; including time-series signals is the obvi-
ous next step. Integration of multiple diagnostics—perhaps starting with
individual models before combining them—could enable inference of
plasma parameters throughout the device volume. For example, com-
bining triple probe electron temperature measurements with existing
I data would allow density predictions anywhere in the plasma.
This capability could enable in situ diagnostic cross-calibration (e.g.,
the Thomson scattering density measurement) and prediction of
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higher-order distribution moments like particle flux. The model could
be further enhanced by incorporating physics constraints such as
boundary conditions (e.g., zero I at the machine wall) or symmetries.

The problem presented here—learning time-averaged Iy
trends—is fairly simple and required a relatively simple model. As
demonstrated in this work, ML provides a way to explore regions of
parameter space quickly and efficiently. Most physics studies on
plasma devices (and fusion devices) are dedicated to a single particular
problem, use grid scans, and are not useful to other experiments or
campaigns. This work shows a way of using data and trends uncovered
from other experimental studies. This work also demonstrates that
random exploration can be a useful tool: the increased diversity of the
aggregated data will generally benefit an ML model whether the experi-
menter discovers something new or not.

IX. CONCLUSION

We demonstrate the first randomized experiments in a magnetized
plasma experiment to train a neural network model. This learned model
was then used to infer trends when changing field configuration, dis-
charge voltage, or gas puff duration. This model was also used to opti-
mize axial variation of Iy as measured by the standard deviation, which
was validated in later experiments despite poor absolute error.

We strongly advocate that all ML-based analyses in plasma and
fusion research should be validated and used to gain insight by infer-
ring trends, as demonstrated here. This validation step is crucial for
ensuring that ML models capture physically meaningful relationships,
and the insights provided may provide direction for future research.
We hope this is the first step toward automating plasma science.
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APPENDIX A: DATA BIAS

Despite the best efforts to randomize the machine configura-
tion, imbalance in the dataset will be present because of the
relatively small amount of samples for the given actuator space. The

Data /st distributions

14000 A E b
DR1+DR2 DR1 DR2
12000 A 1 §
. All

10000 7 B Train ] ]
" B Test
) _ _
3
o
O _ _

0 10 20 0

10 0 10 20

Isat (MA / mm?)

FIG. 10. Distribution of /sy signals. DR1 appears to have a more uniform distribution than DR2 does. Combining the two datasets results in many /s examples near 0 mA/mm?
and a sharp decrease in number of examples above 10 mA/mmZ. From these histograms, we expect or model to be biased toward fitting lower /st values better and to perform

badly in cases with very high /s values.
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TABLE IV. Data breakdown by class and dataset (percent).

ARTICLE pubs.aip.org/aip/pop

B source (G)

B mirror (G)

B midplane (G)

Train Test All Train Test All Train Test All

500 4.77 0 4.29 250 4.30 8.41 4.72 250 8.25 21.01 9.55
750 3.34 12.61 4.29 500 30.49 8.41 28.23 500 43.80 8.41 40.19
1000 43.13 78.99 46.78 750 6.68 16.81 7.72 750 6.62 52.19 11.27
1250 12.59 0 11.30 1000 28.85 57.97 31.82 1000 26.36 5.78 24.26
1500 19.23 0 17.27 1250 3.34 4.20 3.43 1250 9.24 0 8.30
1750 1.91 0 1.71 1500 26.34 4.20 24.08 1500 5.73 12.61 6.43
2000 15.03 8.41 14.35
Gas puff voltage (V) Discharge voltage (V) Axial probe position (cm)
70 12.11 16.81 12.59 70 12.22 8.41 11.83 639 12.48 8.41 12.06
75 6.68 0 6.00 80 5.25 0 4.72 828 17.07 36.28 19.03
80 11.46 8.41 11.15 90 2.86 8.41 343 859 12.48 8.41 12.06
82 41.49 57.97 43.17 100 3.34 8.41 3.86 895 33.01 30.10 32.71
85 14.13 0 12.69 110 8.77 0 7.87 1017 12.48 8.41 12.06
90 14.13 16.81 14.40 112 20.62 0 18.52 1145 12.48 8.41 12.06

120 3.82 8.41 4.29

130 0.95 0 0.86

140 2.86 8.41 3.43

150 39.30 57.97 41.20

Gas puff duration (ms)

Vertical probe position (cm)

38 94.27 91.59 94.00 ~0 36.26
< 38 5.73 8.41 6.00 #0 63.74

46.08 37.26
53.92 62.74

distribution of Iy, signals can be seen in Fig. 10. The I distribution
is clearly different for DR1 and DR2, with DR1 having a much flat-
ter distribution. These distributions imply that if the model is
constrained to sample from DR2 via the run set flag, then the model
is expected to predict a lower I value in general. When predicting
from the model in general, performance will likely be worse for I
values =11 mA/mm?.

The distribution of the selected machine settings for all the
dataruns is enumerated in Table I'V. Despite the randomization of
the settings of 44 dataruns, the distribution is often uneven. This
unevenness is exacerbated in the test set because that is a selection
of 6 out of 67 dataruns. The remaining 23 nonrandom dataruns also
contribute to the imbalance. For example, a source field of 1 kG and
discharge voltage of 112 show up disproportionately in the dataset
because data were collected at those settings, while other equipment
was being adjusted or calibrated.

APPENDIX B: DATA AND TRAINING PIPELINE
VALIDATION

Multiple models were trained with varying depths and
widths to verify that training loss decreases with increased
model capacity. Doubling the layer width from 512 to 1024

moderately decreases the training loss; doubling the depth of the
network from 4 to 8 layers has a larger impact. Increasing the width
further to 2048 and depth to 12 layers has a dramatic impact on
training loss, so this model and dataset are behaving nominally. The
loss function for one of the NN in the ensemble is seen in Fig. 11.
The MSE decreases monotonically for the training and
validation set but does not for the test set. The loss function
can no longer be interpreted as a log-likelihood because of the
effective per-example learning rate set by the f term in the loss
[Eq. (2)]. Note that early stopping (at around 8 epochs) would
improve the test set loss, but the MSE would still be several factors
higher than after 500 epochs. Early stopping was not explored in
this study.

APPENDIX C: EFFECT OF /55 CALIBRATION

The Langmuir probes did not seem to be behaving correctly
when the optimization validation data were taken. The probes
showed an increasing Iy profile when moving further from the
cathode in the lowest gas puff condition, which is in direct disagree-
ment with previous measurements and intuition. An example of
this discrepancy can be seen in Fig. 12, where a run from the origi-
nal testing set (specifically DR2 run 10) is duplicate. The probes for
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Loss and MSE over epochs, model 1 of 5
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FIG. 11. The loss and MSE for the training, validation, and test sets over the entire
training duration of 500 epochs. The inclusion of the f3 term in the loss function—
interpreted as a per-example learning rate—makes the loss function no longer inter-
pretable in simple terms. The mean-squared error benefits from longer training for
all sets.
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FIG. 12. Comparison of original DR2 profiles with the profiles from the optimization
dataset (DROpt) for the same machine configuration. The /s values in the DROpt
dataset are not calibrated in this plot, indicating significant variation in probe calibra-
tion in this DROpt dataset.

ARTICLE pubs.aip.org/aip/pop

the validation run can be either corrected for by assuming the 5 ms
gas puff run has a flat axial profile or normalizing the probes to the
DR2 run 10 axial profile. Calibrating the probes using the DR2 run
10 reference was the best way to go because it corrects for both
probe discrepancies and changes in the condition (or emissivity) of
the main cathode.
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